3.114 \(\int \frac {x^5 (a+b \cosh ^{-1}(c x))}{(d-c^2 d x^2)^{3/2}} \, dx\)

Optimal. Leaf size=233 \[ -\frac {\left (d-c^2 d x^2\right )^{3/2} \left (a+b \cosh ^{-1}(c x)\right )}{3 c^6 d^3}+\frac {2 \sqrt {d-c^2 d x^2} \left (a+b \cosh ^{-1}(c x)\right )}{c^6 d^2}+\frac {a+b \cosh ^{-1}(c x)}{c^6 d \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {d-c^2 d x^2} \tanh ^{-1}(c x)}{c^6 d^2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {5 b x \sqrt {d-c^2 d x^2}}{3 c^5 d^2 \sqrt {c x-1} \sqrt {c x+1}}-\frac {b x^3 \sqrt {d-c^2 d x^2}}{9 c^3 d^2 \sqrt {c x-1} \sqrt {c x+1}} \]

[Out]

-1/3*(-c^2*d*x^2+d)^(3/2)*(a+b*arccosh(c*x))/c^6/d^3+(a+b*arccosh(c*x))/c^6/d/(-c^2*d*x^2+d)^(1/2)+2*(a+b*arcc
osh(c*x))*(-c^2*d*x^2+d)^(1/2)/c^6/d^2-5/3*b*x*(-c^2*d*x^2+d)^(1/2)/c^5/d^2/(c*x-1)^(1/2)/(c*x+1)^(1/2)-1/9*b*
x^3*(-c^2*d*x^2+d)^(1/2)/c^3/d^2/(c*x-1)^(1/2)/(c*x+1)^(1/2)-b*arctanh(c*x)*(-c^2*d*x^2+d)^(1/2)/c^6/d^2/(c*x-
1)^(1/2)/(c*x+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.43, antiderivative size = 262, normalized size of antiderivative = 1.12, number of steps used = 5, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5798, 98, 21, 100, 12, 74, 5733, 1153, 208} \[ \frac {x^4 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 x^2 (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^4 d \sqrt {d-c^2 d x^2}}+\frac {8 (1-c x) (c x+1) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^6 d \sqrt {d-c^2 d x^2}}+\frac {b x^3 \sqrt {c x-1} \sqrt {c x+1}}{9 c^3 d \sqrt {d-c^2 d x^2}}+\frac {5 b x \sqrt {c x-1} \sqrt {c x+1}}{3 c^5 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {c x-1} \sqrt {c x+1} \tanh ^{-1}(c x)}{c^6 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(x^5*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(5*b*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(3*c^5*d*Sqrt[d - c^2*d*x^2]) + (b*x^3*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(9*c
^3*d*Sqrt[d - c^2*d*x^2]) + (x^4*(a + b*ArcCosh[c*x]))/(c^2*d*Sqrt[d - c^2*d*x^2]) + (8*(1 - c*x)*(1 + c*x)*(a
 + b*ArcCosh[c*x]))/(3*c^6*d*Sqrt[d - c^2*d*x^2]) + (4*x^2*(1 - c*x)*(1 + c*x)*(a + b*ArcCosh[c*x]))/(3*c^4*d*
Sqrt[d - c^2*d*x^2]) + (b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTanh[c*x])/(c^6*d*Sqrt[d - c^2*d*x^2])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 74

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] &
& EqQ[a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]

Rule 98

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((b*c -
 a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m - 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 1)), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 1153

Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
b*d*e + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]

Rule 5733

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_Sym
bol] :> With[{u = IntHide[x^m*(1 + c*x)^p*(-1 + c*x)^p, x]}, Dist[(-(d1*d2))^p*(a + b*ArcCosh[c*x]), u, x] - D
ist[b*c*(-(d1*d2))^p, Int[SimplifyIntegrand[u/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d
1, e1, d2, e2}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[p - 1/2] && (IGtQ[(m + 1)/2, 0] || IL
tQ[(m + 2*p + 3)/2, 0]) && NeQ[p, -2^(-1)] && GtQ[d1, 0] && LtQ[d2, 0]

Rule 5798

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist
[((-d)^IntPart[p]*(d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(f*x)^m*(1 + c*
x)^p*(-1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[c^2*d + e, 0]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {x^5 \left (a+b \cosh ^{-1}(c x)\right )}{\left (d-c^2 d x^2\right )^{3/2}} \, dx &=-\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x^5 \left (a+b \cosh ^{-1}(c x)\right )}{(-1+c x)^{3/2} (1+c x)^{3/2}} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {x^4 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {8 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^6 d \sqrt {d-c^2 d x^2}}+\frac {4 x^2 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^4 d \sqrt {d-c^2 d x^2}}+\frac {\left (b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {8-4 c^2 x^2-c^4 x^4}{3 c^6-3 c^8 x^2} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {x^4 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {8 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^6 d \sqrt {d-c^2 d x^2}}+\frac {4 x^2 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^4 d \sqrt {d-c^2 d x^2}}+\frac {\left (b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \left (\frac {5}{3 c^6}+\frac {x^2}{3 c^4}+\frac {3}{3 c^6-3 c^8 x^2}\right ) \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {5 b x \sqrt {-1+c x} \sqrt {1+c x}}{3 c^5 d \sqrt {d-c^2 d x^2}}+\frac {b x^3 \sqrt {-1+c x} \sqrt {1+c x}}{9 c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^4 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {8 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^6 d \sqrt {d-c^2 d x^2}}+\frac {4 x^2 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^4 d \sqrt {d-c^2 d x^2}}+\frac {\left (3 b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{3 c^6-3 c^8 x^2} \, dx}{d \sqrt {d-c^2 d x^2}}\\ &=\frac {5 b x \sqrt {-1+c x} \sqrt {1+c x}}{3 c^5 d \sqrt {d-c^2 d x^2}}+\frac {b x^3 \sqrt {-1+c x} \sqrt {1+c x}}{9 c^3 d \sqrt {d-c^2 d x^2}}+\frac {x^4 \left (a+b \cosh ^{-1}(c x)\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {8 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^6 d \sqrt {d-c^2 d x^2}}+\frac {4 x^2 (1-c x) (1+c x) \left (a+b \cosh ^{-1}(c x)\right )}{3 c^4 d \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {-1+c x} \sqrt {1+c x} \tanh ^{-1}(c x)}{c^6 d \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 145, normalized size = 0.62 \[ \frac {-3 a c^4 x^4-12 a c^2 x^2+24 a+b c^3 x^3 \sqrt {c x-1} \sqrt {c x+1}-3 b \left (c^4 x^4+4 c^2 x^2-8\right ) \cosh ^{-1}(c x)+15 b c x \sqrt {c x-1} \sqrt {c x+1}+9 b \sqrt {c x-1} \sqrt {c x+1} \tanh ^{-1}(c x)}{9 c^6 d \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^5*(a + b*ArcCosh[c*x]))/(d - c^2*d*x^2)^(3/2),x]

[Out]

(24*a - 12*a*c^2*x^2 - 3*a*c^4*x^4 + 15*b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x] + b*c^3*x^3*Sqrt[-1 + c*x]*Sqrt[1 +
 c*x] - 3*b*(-8 + 4*c^2*x^2 + c^4*x^4)*ArcCosh[c*x] + 9*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTanh[c*x])/(9*c^6*d*
Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [A]  time = 0.61, size = 489, normalized size = 2.10 \[ \left [\frac {12 \, {\left (b c^{4} x^{4} + 4 \, b c^{2} x^{2} - 8 \, b\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) - 9 \, {\left (b c^{2} x^{2} - b\right )} \sqrt {-d} \log \left (-\frac {c^{6} d x^{6} + 5 \, c^{4} d x^{4} - 5 \, c^{2} d x^{2} - 4 \, {\left (c^{3} x^{3} + c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} \sqrt {-d} - d}{c^{6} x^{6} - 3 \, c^{4} x^{4} + 3 \, c^{2} x^{2} - 1}\right ) - 4 \, {\left (b c^{3} x^{3} + 15 \, b c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} + 12 \, {\left (a c^{4} x^{4} + 4 \, a c^{2} x^{2} - 8 \, a\right )} \sqrt {-c^{2} d x^{2} + d}}{36 \, {\left (c^{8} d^{2} x^{2} - c^{6} d^{2}\right )}}, -\frac {9 \, {\left (b c^{2} x^{2} - b\right )} \sqrt {d} \arctan \left (\frac {2 \, \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} c \sqrt {d} x}{c^{4} d x^{4} - d}\right ) - 6 \, {\left (b c^{4} x^{4} + 4 \, b c^{2} x^{2} - 8 \, b\right )} \sqrt {-c^{2} d x^{2} + d} \log \left (c x + \sqrt {c^{2} x^{2} - 1}\right ) + 2 \, {\left (b c^{3} x^{3} + 15 \, b c x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {c^{2} x^{2} - 1} - 6 \, {\left (a c^{4} x^{4} + 4 \, a c^{2} x^{2} - 8 \, a\right )} \sqrt {-c^{2} d x^{2} + d}}{18 \, {\left (c^{8} d^{2} x^{2} - c^{6} d^{2}\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")

[Out]

[1/36*(12*(b*c^4*x^4 + 4*b*c^2*x^2 - 8*b)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 - 1)) - 9*(b*c^2*x^2 - b
)*sqrt(-d)*log(-(c^6*d*x^6 + 5*c^4*d*x^4 - 5*c^2*d*x^2 - 4*(c^3*x^3 + c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 -
 1)*sqrt(-d) - d)/(c^6*x^6 - 3*c^4*x^4 + 3*c^2*x^2 - 1)) - 4*(b*c^3*x^3 + 15*b*c*x)*sqrt(-c^2*d*x^2 + d)*sqrt(
c^2*x^2 - 1) + 12*(a*c^4*x^4 + 4*a*c^2*x^2 - 8*a)*sqrt(-c^2*d*x^2 + d))/(c^8*d^2*x^2 - c^6*d^2), -1/18*(9*(b*c
^2*x^2 - b)*sqrt(d)*arctan(2*sqrt(-c^2*d*x^2 + d)*sqrt(c^2*x^2 - 1)*c*sqrt(d)*x/(c^4*d*x^4 - d)) - 6*(b*c^4*x^
4 + 4*b*c^2*x^2 - 8*b)*sqrt(-c^2*d*x^2 + d)*log(c*x + sqrt(c^2*x^2 - 1)) + 2*(b*c^3*x^3 + 15*b*c*x)*sqrt(-c^2*
d*x^2 + d)*sqrt(c^2*x^2 - 1) - 6*(a*c^4*x^4 + 4*a*c^2*x^2 - 8*a)*sqrt(-c^2*d*x^2 + d))/(c^8*d^2*x^2 - c^6*d^2)
]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.68, size = 431, normalized size = 1.85 \[ -\frac {a \,x^{4}}{3 c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}-\frac {4 a \,x^{2}}{3 c^{4} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {8 a}{3 c^{6} d \sqrt {-c^{2} d \,x^{2}+d}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}-1\right )}{c^{6} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {8 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )}{3 c^{6} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x^{4}}{3 c^{2} d^{2} \left (c^{2} x^{2}-1\right )}+\frac {4 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x^{2}}{3 c^{4} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{c^{6} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x +1}\, \sqrt {c x -1}\, x^{3}}{9 c^{3} d^{2} \left (c^{2} x^{2}-1\right )}-\frac {5 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x +1}\, \sqrt {c x -1}\, x}{3 c^{5} d^{2} \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x)

[Out]

-1/3*a*x^4/c^2/d/(-c^2*d*x^2+d)^(1/2)-4/3*a/c^4*x^2/d/(-c^2*d*x^2+d)^(1/2)+8/3*a/c^6/d/(-c^2*d*x^2+d)^(1/2)+b*
(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c^6/d^2/(c^2*x^2-1)*ln(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)-1)-8
/3*b*(-d*(c^2*x^2-1))^(1/2)/c^6/d^2/(c^2*x^2-1)*arccosh(c*x)+1/3*b*(-d*(c^2*x^2-1))^(1/2)/c^2/d^2/(c^2*x^2-1)*
arccosh(c*x)*x^4+4/3*b*(-d*(c^2*x^2-1))^(1/2)/c^4/d^2/(c^2*x^2-1)*arccosh(c*x)*x^2-b*(-d*(c^2*x^2-1))^(1/2)*(c
*x-1)^(1/2)*(c*x+1)^(1/2)/c^6/d^2/(c^2*x^2-1)*ln(1+c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))-1/9*b*(-d*(c^2*x^2-1))^(1/
2)/c^3/d^2/(c^2*x^2-1)*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^3-5/3*b*(-d*(c^2*x^2-1))^(1/2)/c^5/d^2/(c^2*x^2-1)*(c*x+1
)^(1/2)*(c*x-1)^(1/2)*x

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {1}{3} \, a {\left (\frac {x^{4}}{\sqrt {-c^{2} d x^{2} + d} c^{2} d} + \frac {4 \, x^{2}}{\sqrt {-c^{2} d x^{2} + d} c^{4} d} - \frac {8}{\sqrt {-c^{2} d x^{2} + d} c^{6} d}\right )} + \frac {1}{9} \, b {\left (\frac {\frac {{\left (c^{4} \sqrt {d} x^{4} + 16 \, c^{2} \sqrt {d} x^{2} - 8 \, \sqrt {d}\right )} \sqrt {c x + 1} \sqrt {c x - 1}}{\sqrt {-c x + 1}} - \frac {3 \, {\left (c^{5} \sqrt {d} x^{5} + 4 \, c^{3} \sqrt {d} x^{3} - 8 \, c \sqrt {d} x + {\left (c^{4} \sqrt {d} x^{4} + 4 \, c^{2} \sqrt {d} x^{2} - 8 \, \sqrt {d}\right )} \sqrt {c x + 1} \sqrt {c x - 1}\right )} \log \left (c x + \sqrt {c x + 1} \sqrt {c x - 1}\right )}{\sqrt {-c x + 1}}}{\sqrt {c x + 1} c^{7} d^{2} x + {\left (c x + 1\right )} \sqrt {c x - 1} c^{6} d^{2}} + 9 \, \int \frac {3 \, c^{7} \sqrt {d} x^{7} + 9 \, c^{5} \sqrt {d} x^{5} - 36 \, c^{3} \sqrt {d} x^{3} + 24 \, c \sqrt {d} x + {\left (3 \, c^{6} \sqrt {d} x^{6} + 8 \, c^{4} \sqrt {d} x^{4} - 52 \, c^{2} \sqrt {d} x^{2} + 32 \, \sqrt {d}\right )} e^{\left (\frac {1}{2} \, \log \left (c x + 1\right ) + \frac {1}{2} \, \log \left (c x - 1\right )\right )}}{9 \, \sqrt {-c x + 1} {\left ({\left (c^{7} d^{2} x^{2} - c^{5} d^{2}\right )} e^{\left (\frac {3}{2} \, \log \left (c x + 1\right ) + \log \left (c x - 1\right )\right )} + 2 \, {\left (c^{8} d^{2} x^{3} - c^{6} d^{2} x\right )} e^{\left (\log \left (c x + 1\right ) + \frac {1}{2} \, \log \left (c x - 1\right )\right )} + {\left (c^{9} d^{2} x^{4} - c^{7} d^{2} x^{2}\right )} \sqrt {c x + 1}\right )}}\,{d x}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^5*(a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")

[Out]

-1/3*a*(x^4/(sqrt(-c^2*d*x^2 + d)*c^2*d) + 4*x^2/(sqrt(-c^2*d*x^2 + d)*c^4*d) - 8/(sqrt(-c^2*d*x^2 + d)*c^6*d)
) + 1/9*b*(((c^4*sqrt(d)*x^4 + 16*c^2*sqrt(d)*x^2 - 8*sqrt(d))*sqrt(c*x + 1)*sqrt(c*x - 1)/sqrt(-c*x + 1) - 3*
(c^5*sqrt(d)*x^5 + 4*c^3*sqrt(d)*x^3 - 8*c*sqrt(d)*x + (c^4*sqrt(d)*x^4 + 4*c^2*sqrt(d)*x^2 - 8*sqrt(d))*sqrt(
c*x + 1)*sqrt(c*x - 1))*log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/sqrt(-c*x + 1))/(sqrt(c*x + 1)*c^7*d^2*x + (c*x
 + 1)*sqrt(c*x - 1)*c^6*d^2) + 9*integrate(1/9*(3*c^7*sqrt(d)*x^7 + 9*c^5*sqrt(d)*x^5 - 36*c^3*sqrt(d)*x^3 + 2
4*c*sqrt(d)*x + (3*c^6*sqrt(d)*x^6 + 8*c^4*sqrt(d)*x^4 - 52*c^2*sqrt(d)*x^2 + 32*sqrt(d))*e^(1/2*log(c*x + 1)
+ 1/2*log(c*x - 1)))/(sqrt(-c*x + 1)*((c^7*d^2*x^2 - c^5*d^2)*e^(3/2*log(c*x + 1) + log(c*x - 1)) + 2*(c^8*d^2
*x^3 - c^6*d^2*x)*e^(log(c*x + 1) + 1/2*log(c*x - 1)) + (c^9*d^2*x^4 - c^7*d^2*x^2)*sqrt(c*x + 1))), x))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {x^5\,\left (a+b\,\mathrm {acosh}\left (c\,x\right )\right )}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^5*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(3/2),x)

[Out]

int((x^5*(a + b*acosh(c*x)))/(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{5} \left (a + b \operatorname {acosh}{\left (c x \right )}\right )}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**5*(a+b*acosh(c*x))/(-c**2*d*x**2+d)**(3/2),x)

[Out]

Integral(x**5*(a + b*acosh(c*x))/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)

________________________________________________________________________________________